LinkedBlockingQueue介绍
LinkedBlockingQueue是一个单向链表实现的阻塞队列。该队列按 FIFO(先进先出)排序元素,新元素插入到队列的尾部,并且队列获取操作会获得位于队列头部的元素。链接队列的吞吐量通常要高于基于数组的队列,但是在大多数并发应用程序中,其可预知的性能要低。
此外,LinkedBlockingQueue还是可选容量的(防止过度膨胀),即可以指定队列的容量。如果不指定,默认容量大小等于Integer.MAX_VALUE。
LinkedBlockingQueue原理和数据结构
LinkedBlockingQueue的数据结构,如下图所示:.resources/C0887B04-3B23-4874-B6D5-702B2FE76242.jpg)
说明:
- LinkedBlockingQueue继承于AbstractQueue,它本质上是一个FIFO(先进先出)的队列。
- LinkedBlockingQueue实现了BlockingQueue接口,它支持多线程并发。当多线程竞争同一个资源时,某线程获取到该资源之后,其它线程需要阻塞等待。
- LinkedBlockingQueue是通过单链表实现的:
(01) head是链表的表头。取出数据时,都是从表头head处插入。
(02) last是链表的表尾。新增数据时,都是从表尾last处插入。(03) count是链表的实际大小,即当前链表中包含的节点个数。(04) capacity是列表的容量,它是在创建链表时指定的。
(05) putLock是插入锁,takeLock是取出锁;notEmpty是“非空条件”,notFull是“未满条件”。通过它们对链表进行并发控制。
LinkedBlockingQueue在实现“多线程对竞争资源的互斥访问”时,对于“插入”和“取出(删除)”操作分别使用了不同的锁。对于插入操作,通过“插入锁putLock”进行同步;对于取出操作,通过“取出锁takeLock”进行同步。
此外,插入锁putLock和“非满条件notFull”相关联,取出锁takeLock和“非空条件notEmpty”相关联。通过notFull和notEmpty更细腻的控制锁。
1 | 若某线程(线程A)要取出数据时,队列正好为空,则该线程会执行notEmpty.await()进行等待;当其它某个线程(线程B)向队列中插入了数据之后,会调用notEmpty.signal()唤醒“notEmpty上的等待线程”。此时,线程A会被唤醒从而得以继续运行。 此外,线程A在执行取操作前,会获取takeLock,在取操作执行完毕再释放takeLock。 |
LinkedBlockingQueue函数列表
1 | // 创建一个容量为 Integer.MAX_VALUE 的 LinkedBlockingQueue。 |
LinkedBlockingQueue源码分析
下面从LinkedBlockingQueue的创建,添加,删除,遍历这几个方面对它进行分析。
1. 创建
下面以LinkedBlockingQueue(int capacity)来进行说明。1
2
3
4
5public LinkedBlockingQueue(int capacity) {
if (capacity <= 0) throw new IllegalArgumentException();
this.capacity = capacity;
last = head = new Node<E>(null);
}
说明:
(01) capacity是“链式阻塞队列”的容量。
(02) head和last是“链式阻塞队列”的首节点和尾节点。它们在LinkedBlockingQueue中的声明如下:1
2
3
4
5
6
7
8
9
10
11
12// 容量
private final int capacity;
// 当前数量
private final AtomicInteger count = new AtomicInteger(0);
private transient Node<E> head; // 链表的表头
private transient Node<E> last; // 链表的表尾
// 用于控制“删除元素”的互斥锁takeLock 和 锁对应的“非空条件”notEmpty
private final ReentrantLock takeLock = new ReentrantLock();
private final Condition notEmpty = takeLock.newCondition();
// 用于控制“添加元素”的互斥锁putLock 和 锁对应的“非满条件”notFull
private final ReentrantLock putLock = new ReentrantLock();
private final Condition notFull = putLock.newCondition();
链表的节点定义如下:1
2
3
4
5
6static class Node<E> {
E item; // 数据
Node<E> next; // 下一个节点的指针
Node(E x) { item = x; }
}
2. 添加
下面以offer(E e)为例,对LinkedBlockingQueue的添加方法进行说明。1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33public boolean offer(E e) {
if (e == null) throw new NullPointerException();
// 如果“队列已满”,则返回false,表示插入失败。
final AtomicInteger count = this.count;
if (count.get() == capacity)
return false;
int c = -1;
// 新建“节点e”
Node<E> node = new Node(e);
final ReentrantLock putLock = this.putLock;
// 获取“插入锁putLock”
putLock.lock();
try {
// 再次对“队列是不是满”的进行判断。
// 若“队列未满”,则插入节点。
if (count.get() < capacity) {
// 插入节点
enqueue(node);
// 将“当前节点数量”+1,并返回“原始的数量”
c = count.getAndIncrement();
// 如果在插入元素之后,队列仍然未满,则唤醒notFull上的等待线程。
if (c + 1 < capacity)
notFull.signal();
}
} finally {
// 释放“插入锁putLock”
putLock.unlock();
}
// 如果在插入节点前,队列为空;则插入节点后,唤醒notEmpty上的等待线程
if (c == 0)
signalNotEmpty();
return c >= 0;
}
说明:offer()的作用很简单,就是将元素E添加到队列的末尾。
enqueue()的源码如下:1
2
3
4
5private void enqueue(Node<E> node) {
// assert putLock.isHeldByCurrentThread();
// assert last.next == null;
last = last.next = node;
}
enqueue()的作用是将node添加到队列末尾,并设置node为新的尾节点!
signalNotEmpty()的源码如下:1
2
3
4
5
6
7
8
9private void signalNotEmpty() {
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
notEmpty.signal();
} finally {
takeLock.unlock();
}
}
signalNotEmpty()的作用是唤醒notEmpty上的等待线程。
3. 取出
下面以take()为例,对LinkedBlockingQueue的取出方法进行说明。1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27public E take() throws InterruptedException {
E x;
int c = -1;
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
// 获取“取出锁”,若当前线程是中断状态,则抛出InterruptedException异常
takeLock.lockInterruptibly();
try {
// 若“队列为空”,则一直等待。
while (count.get() == 0) {
notEmpty.await();
}
// 取出元素
x = dequeue();
// 取出元素之后,将“节点数量”-1;并返回“原始的节点数量”。
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
} finally {
// 释放“取出锁”
takeLock.unlock();
}
// 如果在“取出元素之前”,队列是满的;则在取出元素之后,唤醒notFull上的等待线程。
if (c == capacity)
signalNotFull();
return x;
}
说明:take()的作用是取出并返回队列的头。若队列为空,则一直等待。
dequeue()的源码如下:1
2
3
4
5
6
7
8
9
10
11private E dequeue() {
// assert takeLock.isHeldByCurrentThread();
// assert head.item == null;
Node<E> h = head;
Node<E> first = h.next;
h.next = h; // help GC
head = first;
E x = first.item;
first.item = null;
return x;
}
dequeue()的作用就是删除队列的头节点,并将表头指向“原头节点的下一个节点”。
signalNotFull()的源码如下:1
2
3
4
5
6
7
8
9private void signalNotFull() {
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {
notFull.signal();
} finally {
putLock.unlock();
}
}
signalNotFull()的作用就是唤醒notFull上的等待线程。
4. 遍历
下面对LinkedBlockingQueue的遍历方法进行说明。1
2
3public Iterator<E> iterator() {
return new Itr();
}
iterator()实际上是返回一个Iter对象。
Itr类的定义如下:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75private class Itr implements Iterator<E> {
// 当前节点
private Node<E> current;
// 上一次返回的节点
private Node<E> lastRet;
// 当前节点对应的值
private E currentElement;
Itr() {
// 同时获取“插入锁putLock” 和 “取出锁takeLock”
fullyLock();
try {
// 设置“当前元素”为“队列表头的下一节点”,即为队列的第一个有效节点
current = head.next;
if (current != null)
currentElement = current.item;
} finally {
// 释放“插入锁putLock” 和 “取出锁takeLock”
fullyUnlock();
}
}
// 返回“下一个节点是否为null”
public boolean hasNext() {
return current != null;
}
private Node<E> nextNode(Node<E> p) {
for (;;) {
Node<E> s = p.next;
if (s == p)
return head.next;
if (s == null || s.item != null)
return s;
p = s;
}
}
// 返回下一个节点
public E next() {
fullyLock();
try {
if (current == null)
throw new NoSuchElementException();
E x = currentElement;
lastRet = current;
current = nextNode(current);
currentElement = (current == null) ? null : current.item;
return x;
} finally {
fullyUnlock();
}
}
// 删除下一个节点
public void remove() {
if (lastRet == null)
throw new IllegalStateException();
fullyLock();
try {
Node<E> node = lastRet;
lastRet = null;
for (Node<E> trail = head, p = trail.next;
p != null;
trail = p, p = p.next) {
if (p == node) {
unlink(p, trail);
break;
}
}
} finally {
fullyUnlock();
}
}
}
LinkedBlockingQueue示例
1 | import java.util.*; |
其中一次运行结果:1
2
3
4
5
6
7
8
9
10
11
12tb1, ta1,
tb1, ta1, ta2,
tb1, ta1, ta2, ta3,
tb1, ta1, ta2, ta3, ta4,
tb1, ta1, tb1, ta2, ta1, ta3, ta2, ta4, ta3, ta5,
ta4, tb1, ta5, ta1, ta6,
ta2, tb1, ta3, ta1, ta4, ta2, ta5, ta3, ta6, ta4, tb2,
ta5, ta6, tb2,
tb1, ta1, ta2, ta3, ta4, ta5, ta6, tb2, tb3,
tb1, ta1, ta2, ta3, ta4, ta5, ta6, tb2, tb3, tb4,
tb1, ta1, ta2, ta3, ta4, ta5, ta6, tb2, tb3, tb4, tb5,
tb1, ta1, ta2, ta3, ta4, ta5, ta6, tb2, tb3, tb4, tb5, tb6,
结果说明:
示例程序中,启动两个线程(线程ta和线程tb)分别对LinkedBlockingQueue进行操作。以线程ta而言,它会先获取“线程名”+“序号”,然后将该字符串添加到LinkedBlockingQueue中;接着,遍历并输出LinkedBlockingQueue中的全部元素。 线程tb的操作和线程ta一样,只不过线程tb的名字和线程ta的名字不同。
当queue是LinkedBlockingQueue对象时,程序能正常运行。如果将queue改为LinkedList时,程序会产生ConcurrentModificationException异常。