通常情况下,建立索引是加快查询速度的有效手段。但索引不是万能的,靠索 引并不能实现对所有数据的快速存取。事实上,如果索引策略和数据检索需求严重不符的话,建立索引反而会降低查询性能。因此在实际使用当中,应该充分考虑到 索引的开销,包括磁盘空间的开销及处理开销(如资源竞争和加锁)。例如,如果数据频繁的更新或删加,就不宜建立索引。
本文简要讨论一下聚簇索引的特点及其与非聚簇索引的区别。
聚簇索引
数据库表的索引从数据存储方式上可以分为聚簇索引和非聚簇索引(又叫二级索引)两种。Innodb的聚簇索引在同一个B-Tree中保存了索引列和具体的数据,在聚簇索引中,实际的数据保存在叶子页中,中间的节点页保存指向下一层页面的指针。“聚簇”的意思是数据行被按照一定顺序一个个紧密地排列在一起存储。一个表只能有一个聚簇索引,因为在一个表中数据的存放方式只有一种。
一般来说,将通过主键作为聚簇索引的索引列,也就是通过主键聚集数据。
非聚簇索引
非聚簇索引,又叫二级索引。二级索引的叶子节点中保存的不是指向行的物理指针,而是行的主键值。当通过二级索引查找行,存储引擎需要在二级索引中找到相应的叶子节点,获得行的主键值,然后使用主键去聚簇索引中查找数据行,这需要两次B-Tree查找。
建立索引:
在SQL语言中,建立聚簇索引使用CREATE INDEX语句,格式为:CREATE CLUSTER INDEX index_name ON table_name(column_name1,column_name2,…);
存储特点:
- 聚集索引。表数据按照索引的顺序来存储的,也就是说索引项的顺序与表中记录的物理顺序一致。对于聚集索引,叶子结点即存储了真实的数据行,不再有另外单独的数据页。 在一张表上最多只能创建一个聚集索引,因为真实数据的物理顺序只能有一种。
- 非聚集索引。表数据存储顺序与索引顺序无关。对于非聚集索引,叶结点包含索引字段值及指向数据页数据行的逻辑指针,其行数量与数据表行数据量一致。
总结一下:聚集索引是一种稀疏索引,数据页上一级的索引页存储的是页指针,而不是行指针。而对于非聚集索引,则是密集索引,在数据页的上一级索引页它为每一个数据行存储一条索引记录。
更新表数据
- 1、向表中插入新数据行
如果一张表没有聚集索引,那么它被称为“堆集”(Heap)。这样的表中的数据行没有特定的顺序,所有的新行将被添加到表的末尾位置。而建立了聚簇索引的数据表则不同:最简单的情况下,插入操作根据索引找到对应的数据页,然后通过挪动已有的记录为新数据腾出空间,最后插入数据。如果数据页已满,则需要拆分数据页,调整索引指针(且如果表还有非聚集索引,还需要更新这些索引指向新的数据页)。而类似于自增列为聚集索引的,数据库系统可能并不拆分数据页,而只是简单的新添数据页。
- 2、从表中删除数据行
对删除数据行来说:删除行将导致其下方的数据行向上移动以填充删除记录造成的空白。如果删除的行是该数据页中的最后一行,那么该数据页将被回收,相应的索 引页中的记录将被删除。对于数据的删除操作,可能导致索引页中仅有一条记录,这时,该记录可能会被移至邻近的索引页中,原索引页将被回收,即所谓的“索引 合并”。